Drawing Bers Embeddings of the Teichmüller Space of Once-Punctured Tori

نویسندگان

  • Yohei Komori
  • Toshiyuki Sugawa
  • Masaaki Wada
  • Yasushi Yamashita
چکیده

We present a computer-oriented method of producing pictures of Bers embeddings of the Teichmüller space of once-punctured tori. The coordinate plane is chosen in such a way that the accessory parameter is hidden in the relative position of the origin. Our algorithm consists of two steps. To each point in the coordinate plane, we first compute the corresponding monodromy representation by numerical integration along certain loops. Then we decide if the representation is discrete or not by applying the Jørgensen’s theory on the quasifuchsian space of once-punctured tori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cusps in Complex Boundaries of One-dimensional Teichmüller Space

This paper gives a proof of the conjectural phenomena on the complex boundary one-dimensional slices: Every rational boundary point is cusp shaped. This paper treats this problem for Bers slices, the Earle slices, and the Maskit slice. In proving this, we also obtain the following result: Every Teichmüller modular transformation acting on a Bers slice can be extended as a quasi-conformal mappin...

متن کامل

Bers Embedding of the Teichmüller Space of a Once-punctured Torus

In this note, we present a method of computing monodromies of projective structures on a once-punctured torus. This leads to an algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional Teichmüller space. As a by-product, the value of the accessory parameter of a four-times punctured sphere will be calculated in a numerical way as well as the generators of a Fuchsia...

متن کامل

The Limiting Shape of One-dimensional Teichmüller Spaces

We show that the Bers embedding of the Teichmüller space of a once-punctured torus converges to the cardioid in the sense of Carathéodory up to rotation when the base torus goes to the boundary of its moduli space.

متن کامل

Conformal Dehn Surgery and the Shape of Maskit’s Embedding

We study the geometric limits of sequences of loxodromic cyclic groups which arise from conformal Dehn surgery. The results are applied to obtain an asymptotic description of the shape of the main cusp of the Maskit embedding of the Teichmüller space of once-punctured tori.

متن کامل

Coordinates for Quasi-Fuchsian Punctured Torus Space

We consider complex Fenchel–Nielsen coordinates on the quasi-Fuchsian space of punctured tori. These coordinates arise from a generalisation of Kra’s plumbing construction and are related to earthquakes on Teichmüller space. They also allow us to interpolate between two coordinate systems on Teichmüller space, namely the classical Fuchsian space with Fenchel–Nielsen coordinates and the Maskit e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2006